Peilstabsystem MultiLevel Kalibrierung

Benennung	Bestell Nr.
NoMix 2000 Installation	DOK-415
MultiLevel Installations- und Serviceanleitung	DOK-479
MultiLevel Fahrer Bedienungsanleitung	DOK-518
MultiLevel Eichtechnische Prüfung	DOK-514

Weitere Dokumentation zu diesem Produkt:

Historie

	Revision	Datum	Bearbeiter	Status	Beschreibung				
ĺ	Rev. 1.00	Januar 2007	M. Fedde	Freigabe	Grundausgabe				
ĺ	Rev. 2.00	November 2010	ovember 2010 / Oel / JS / jp / F		Bearbeitung / Umstrukturierung				

Wichtiger Hinweis

Alle Erläuterungen und technische Angaben in dieser Dokumentation wurden vom Autor mit größter Sorgfalt erarbeitet und zusammengestellt. Trotzdem sind Fehler nicht ganz auszuschließen. Für die Mitteilung eventueller Fehler ist *F. A. Sening GmbH* jederzeit dankbar.

Inhaltsverzeichnis

1 Allg	emeines	. 5
1.1 Ori	ientierungshilfen für das Handbuch	.5
2 Bes	chreibung des Kalibriervorgangs	. 7
2.1 All	gemeines	.7
2.2 Be	schreibung der Kalibrierung	.8
3 Vorl	bereitung der Kalibrierungŕ	11
3.1 Inb	etriebnahme Fahrzeug	11
3.2 Me	chanische Vorbereitungen	11
3.3 An	schluss der Kalibriereinheit an den CAN-Bus	12
3.3.1 I	Empfohlene fahrzeugseitige Ausrüstung	12
3.3.2	Anschluss der Kalibriereinheit	13
3.4 Erf	orderliche Fahrzeug-Parameter vor dem Kalibrieren	14
3.4.1 I	Eintrag kammerspezifischer Parameter für jede Kammer	14
3.4.2 I	Eintrag fahrzeugspezifischer Parameter einmal je Fahrzeug	15
3.4.3 I	Produktvorwahl im Ladeplan	16
3.5 Set	tup der Kalibriereinheit, Menu <1. Parameter Liste>	16
3.5.1 I	Parameter Liste: <1. Knoten-Nr.>	16
3.5.2 I	Parameter Liste: <2. K-Faktoren>	17
3.5.1 I	Parameter Liste: <3. Durchflussraten>	17
3.5.2 I	Parameter Liste: <4. Flussraten Koffertank>	18
3.5.1 I	Parameter Liste: <5. Flussraten Zylindertank>	19
3.5.2 I	Parameter Liste: <6. Ventilsteuerung>	19
3.5.3 I	Parameter Liste: <7. Abtropfzeiten>	20
3.6 Set	tup der Kalibriereinheit, Menu <3. Tankwagendaten>:	21
3.6.1	Tankwagendaten: <1. Tankwagendaten>	21
3.6.2	Tankwagendaten: <2. ChipCard lesen>	22
3.6.3	Tankwagendaten: <3. ChipCard schreiben>	23
3.6.4 I	Einlesen der Peiltabellen von der Chipkarte in den MultiLevel	25
4 Dur	chführung der Kalibrierung	27
Schritt 1:	Prüfen, ob alle Parameter richtig eingetragen wurden!	27
Schritt 2:	<2. Verbindung herstellen>	27
Schritt 3:	<4. Kalibrierung>	28
Schritt 4:	Start des Kalibrierablaufs	28
Schritt 5:	Öffnen der Ventile	29
Schritt 6:	Entlüften des Systems	30

Schritt 7:	Messung des Schlauchvolumens	31						
Schritt 8:	Messung des Rohrleitungsvolumens	33						
Schritt 9:	Öffnen der Ventile	34						
Schritt 10:	Entlüften des Systems	34						
Schritt 11:	Kalibrieren des Tankkammer	35						
Schritt 12:	Bestimmung der Restmenge	36						
Schritt 13:	Schließen der Ventile	36						
Schritt 14:	Speichern der Werte auf die Chipkarte	37						
Schritt 15:	Lesen der Werte von Chipkarte in den MultiLevel	38						
Schritt 16:	Kopieren und Abspeichern aller Kalibrierdaten auf den PC	39						
5 Auswe	ertung der Kalibrierung	41						
5.1 Allge	meines	.41						
5.2 Frste	llen der Ableitungen aus den Peiltabellen	42						
E 2 Kritor	ium für die Cüte der Kelibrierung (Anferderung en die Ableitung)	42						
5.5 Kriter	ium für die Gute der Kanbrierung (Amorderung an die Abieitung)	43						
6 Check	liste Fahrzeug	. 45						
7 Check	liste Kalibriereinheit	. 49						
8 Ansch	rift und Kontakt	. 51						
Anhang A	Zertifikate und Zeichnungen	53						
Zertifikate.	•	54						
Messanlage	nbrief	54						
Funktionssc	hema (Beispiel)	55						
Rohrleitungs	sschema (Beispiel) / Stempelplan	56						
-Beiblatt-		57						
Stempelplar		58						
Stempelplar	ı / 2	59						
Elektronisch	es Eichsiegel (DOK-482)	60						
Zeichnung	en	.61						
51.351307 -	Sensor NS-2E komplett	61						
51.350839 -	Restmengen Sensoreinstellung hinter dem NS-2E / NS-2A	62						
51.351979 -	Neigungssensor	63						
61.351918 -	1.351918 - Anschlussplan Peilstab-Interface MLIF							

1 Allgemeines

1.1 Orientierungshilfen für das Handbuch

Damit Sie in diesem Handbuch die erforderlichen Informationen leicht finden können, haben wir einige Orientierungshilfen gestaltet.

• Piktogramme

Die Informationen in diesem Handbuch reichen von zwingend notwendigen Schutzmaßnahmen und genormten Vorgaben bis hin zu konkreten Handlungsschritten und Ratschlägen. Zur besseren Unterscheidung im Kontext sind diese Informationen durch entsprechende Piktogramme vor dem Text gekennzeichnet.

Sie sollen nicht nur die Aufmerksamkeit erhöhen, sondern auch helfen, die gewünschte Information schnell herauszufinden. Deshalb stehen die Piktogramme sinnbildlich für den textlichen Inhalt, der dahintersteht.

In diesem Handbuch finden folgende Piktogramme Verwendung:

Gefahrenhinweis.

Hier: Explosionsgefahr durch leichtentzündliche Gase und Flüssigkeiten.

Betriebsstörung droht.

Aktionen, die dem Gerät schaden.

§ Juristische Hinweise.

Aktionen, die rechtliche Konsequenzen nach sich ziehen.

- Arbeitsschritt. Konkrete Tätigkeitsangabe, z.B. "Drücken Sie die <Enter>-Taste"
- Eingabe erforderlich, z.B. über Ziffertasten oder Funktionstasten
- Rückmeldung positiv, z.B. "Jetzt erscheint das Hauptmenü"
- Rückmeldung negativ, z.B. "Sollte jetzt eine Fehlermeldung erscheinen..."
- Gerrore Hintergrundinformation, Kurz-Tip, z.B. "Nähere Information erhalten Sie in Kapitel XX"
- Sonderfall
- **Funktion** Funktionsbeschreibung

HINWEIS: will auf besondere Situation hinweisen.

ACHTUNG: zur besonderen Beachtung.

 Stichwortregister am Ende der Dokumentation dient zur leichteren Auffindung von Themenbereichen. MultiLevel Kalibrierung < >

2 Beschreibung des Kalibriervorgangs

2.1 Allgemeines

- Jede Tankkammer erhält eine individuelle Peiltabelle, die durch Kalibrierung (Ausliterung) erstellt wird. Außerdem wird die Kammerrestmenge und das Rohrleitungsvolumen bestimmt.
- Je genauer die Kalibrierung ist, desto weniger Korrekturen sind später beim Eichen des Fahrzeuges erforderlich.
- Die Kalibrierung der Tankkammern erfolgt mit Hilfe eines Kalibriersystems. (Abbildung 2) Als Medium ist ausschließlich Wasser zu nehmen, da nur dieses durch die Kalibriereinheit erkannt und damit ein Volumen ermittelt werden kann.

Abbildung 1: Beispiel einer Tankkammer

Abbildung 2: Kalibriersystem

Abbildung 3: Chipkarte

Nach der Kalibrierung erfolgt die Übertragung der ermittelten Daten auf den TKW mittels Chipkarte oder über einen seriellen Anschluss.

2.2 Beschreibung der Kalibrierung

- Die zu kalibrierende Kammer des TKW wird an ihrem Abgabeventil über einen ca. 1m langen 3" Schlauch an den Einlaufstutzen DN80 der Kalibriereinheit angeschlossen. Dabei muss unbedingt darauf geachtet werden, dass der Verbindungsschlauch genügend Gefälle zur Kalibriereinheit aufweist.
- Über die Pumpe P1 wird die Kammer entleert, während der magnetisch induktive Durchflussmesser (FQI / MID) das gepumpte Volumen misst.
- Gleichzeitig empfängt die Kalibriereinheit die dazugehörigen Höheninformationen vom MultiLevel des Tankfahrzeuges und speichert beide Werte intern in einer Tabelle ab.
- Nach der Kalibrierung wird die komplette Tabelle (=Peiltabelle) auf eine Chipkarte gespeichert und im MultiLevel eingelesen.

Abbildung 4 Anschluss der Kalibriereinheit

Sening[®] ist ein eingetragenes Warenzeichen von FMC Technologies Inc.

Da der Messbereich des Peilstabes nach unten begrenzt ist, muss die Füllmenge unterhalb des letzten messbaren Füllstands separat von der Kalibriereinheit bestimmt werden. Diese Menge inklusive Rohrleitungsvolumen wird im MultiLevel als "Restmenge" bezeichnet.

Abbildung 6: Definition Restmenge

Restmenge = Füllmenge unterhalb des letzten gültigen Peilstabmesswertes inklusive Rohrleitungsvolumen

Zusätzlich wird von der Kalibriereinheit die Menge in der Rohrleitung bestimmt, um z.B. bei einem Austausch der Rohrleitung ein Auslitern der gesamten Restmenge zu vermeiden. Es ist nur die neue Rohrleitung auszulitern und die Volumendifferenz zur alten Rohrleitung mit der Restmenge abzugleichen.

Abbildung 7: Definition Rohrleitungsvolumen

Rohrleitungsvolumen = Füllmenge zwischen Bodenventil und dem Abgabeventil.

Bei einer Kalibrierung werden folgende Teilvolumen durch die Kalibriereinheit mit zwischenzeitlichem Entlüften des Systems bestimmt.

- Schlauchvolumen (Anschlussschlauch zwischen Abgabeventil und Kalibriereinheit)
- Rohrleitungsvolumen (Verbindung zwischen Bodenventil und Abgabeventil)
- Volumen der Tankkammer (Messbarer Bereich des Peilstabs)
- Restmenge (Nicht messbarer Bereich des Peilstabs)

MultiLevel Kalibrierung ◀► Beschreibung des KalibriervorgangsMN F18 005 GE || DOK-480 || Ausgabe/Rev. 2.00 (11/10)

3 Vorbereitung der Kalibrierung

3.1 Inbetriebnahme Fahrzeug

Sowohl NoMix2000 als auch MultiLevel müssen vor der Kalibrierung soweit in Betrieb genommen werden, dass die grundlegenden Funktionalitäten gegeben sind. Hierzu gehört auch die Eingabe sämtlicher Parameter sowie der Anschluss des Chip-Card-Readers.

In folgenden Dokumenten sind die Inbetriebnahmen von NoMix2000 (DOK-415) und MultiLevel (DOK-479) beschrieben.

3.2 Mechanische Vorbereitungen

Um ein Fahrzeug erfolgreich zu kalibrieren sind folgende Punkte zu berücksichtigen:

- Aufbocken des Sattelaufliegers (empfohlene Höhe Mitte Auslaufstutzen min. 600mm über Boden um ein Leerlaufen mit Gefälle zur Kalibriereinheit zu gewährleisten)
- Ausrichten des aufgebockten Sattelaufliegers mit Hilfe z.B. Digitalwasserwaage an Referenzflächen längs und quer auf 0° ± 0,1°
- **3.** Benötigte Versorgungsspannung der Kalibriereinheit 400V incl. aufgelegtem Nullleiter mit CEE-Kupplung 16A
- **4.** Benötigte Versorgungsdruckluft min. 6 bar für die Kalibriereinheit
- **5.** 2 Stück Schlauch DN50 mit VK50/MK50, 2.5m bis 3m lang
- 6. 2 Stück Adapter VK80 auf VK50
- 1 Stück Abgabeadapter mit Öffnungsfunktion für API-Kupplungen zum Entlüften der Beladeseite
- **8.** Wird über die API-Kupplungen kalibriert, werden 3 Stück Abgabeadapter API auf MK80 benötigt

3.3 Anschluss der Kalibriereinheit an den CAN-Bus

3.3.1 Empfohlene fahrzeugseitige Ausrüstung

Die Kalibriereinheit wird direkt an den externen CAN - Bus angeschlossen. FMC Sening empfiehlt zum Anschluss an das Fahrzeug die Anschlussbuchse SPD-DR-KA2.

ACHTUNG:

Die Dose SPD-DR-KA2 darf nur außerhalb des EX-Raumes angebracht werden!!

3.3.2 Anschluss der Kalibriereinheit

Ist eine Steckdose mit der Teile-Nr. SPD-DR-KA2 am Tankwagen vorhanden, wird der Steckverbinder der Kalibriereinheit direkt dort angeschlossen.

Ist am Tankwagen keine Steckdose Teile-Nr. SPD-DR-KA2 vorhanden, wird die Kalibriereinheit über ein separates Kabel direkt am externen CAN-Bus des Multilevel aufgelegt.

Die Kalibriereinheit kann nur mit NoMix2000 und MultiLevel kommunizieren, wenn die Knotennummer von NoMix2000 bei beiden dieser Komponenten auf den **Knotennummer "10"** gesetzt sind. Bei "MultiLevel stand alone" ist diese auf **"0"** zu setzen.

3.4 Erforderliche Fahrzeug-Parameter vor dem Kalibrieren

- 3.4.1 Eintrag kammerspezifischer Parameter für jede Kammer
 - Eingabe-Display f
 ür die kammerspezifischer Parameter
 - Alle Werte werden in μm eingegeben.(40 mm = 40000 μm)

- Eingabe Offset Eisschutz: Immer 25 mm Offset Eisschutz = Höhe Eisschutz (Menu: 3.1.3.2.x.2.2 x = Kammer-Nr.)
- 2. Eingabe Offset Schwimmer: aus Vorprüfschein Offset Schwimmer = Eintauchtiefe Schwimmer (Menu: 3.1.3.2.x.2.4 x = Kammer-Nr.)
- Eingabe Nullpunkt Peilstab Rohwert des Peilstabes aus dem Diagnosemenu eintragen oder mit Hilfe der "Nullen" Funktion automatisch eintragen. (Menu: 4.2.1.1)

Mit **<F3>** werden die Parameter der nächsten Kammer angezeigt.

4. Schwimmer MIN:

Erfahrungsgemäß sind 40 mm optimal. (Gleicher Wert wie der der Kalibriereinheit unter Parametereingaben: <3. Durchflussraten> Min Höhe).

			L	е	v	e]		5	е	n	S	C			e	n		
	Ρ	e	i	1	s ı	t	a	b	- D	N	r 3	2 1	8	1	0	:	0 µ	1 m	
+		0	u f	⊥ f	⊥ S	р е	t		г Е	e i	ı 3 s	ı 2 s	5 8 C	l h	a 0 u	b t	μ z	m	
+		0	f	f	S	е	t		S	С	2 h	5 w 6	0 i 8	0 m 5	0 m 7	е	μ r μ	m m	
		L	е	v	е	1	:				3	1	8	5	7		μ	m	
									N	U	L	L					\rightarrow		
	1	5	1						F	2	2					E		3	

5. Schwimmer MAX:

Füllhöhe, bis zu der die Kammer beim Start der Kalibrierung gefüllt werden soll. Erfahrungsgemäß ca. 3 bis 4 cm unter Domdeckel. (Durch Messen bestimmen oder beim Befüllen ausprobieren!) Die aktuelle Füllhöhe in mm wird im Bildschirm Multilevel unter Befüllung "F1" angezeigt, wenn keine Peiltabelle hinterlegt ist.

(Menu: 3.1.3.2.x.3.5 x = Kammer-Nr.)

ACHTUNG:

Der Schwimmer muss bei der Eingabe des Nullpunktes Peilstabes auf dem Eisschutz aufliegen!!

3.4.2 Eintrag fahrzeugspezifischer Parameter einmal je Fahrzeug

- Eingabe-Display f
 ür die fahrzeugspezifischen Parameter
- Sicherstellen, dass das Fahrzeug auf 0° ausgerichtet ist. (Längs- und Querneigung)

- 1. Eingabe der Sensorkorrekturen aus dem Vorprüfschein (*Menu: 3.1.5.4.5 / 6*)
- **2.** Eingabe Installationskorrekturen am Fahrzeug.

Wert aus dem Diagnosemenu ablesen und so eintragen, dass beide Neigungen 0° anzeigen oder mit Hilfe der "Nullen" Funktion automatisch eintragen: *(Menu: 4.2.1.3)*

		N	e	i	. 🤆	J	1	n	g	S	5	5 6		n	S	0	ľ	: 6	e n	1
	S Q L	e u ä	n e n	s r g	o n s	r e n	d i e	a g i	t u g	e n u	n g n	: g		+ -	0	, ,	6 3	6 7	0 0	
	I Q L	n u ä	s e n	t r g	n s	e n	K i e	g i	W u g	e n u	r g n	t g	:	– +	0 0	, ,	6 3	6 7	0 0	
	E Q L	r u ä	g e n	e r g	b n s	n e n	i i e	s g i	: u g	n u	g n	g		+ -	0 0	, ,	0 0	0 0	0 0	
									N	ΙÜ	ΙI	I								
]	5	1						F	2	2					F		3	
* * * * * * * * * * *	and the second		315 315 315 315 315 315 315 315 315 315	01 41 42 44 44 44 44 46 46 46 47 48 62 43	SI Mi Ma Se In Ge Ta	ese n. x. ns. ns. st. rät	Läi Läi Qui K- K- K- K- tum	ode 195 ern -We -We -We -We	nei eis rt rt rt mer	laun Jun Lai Qui Lai	ng g ngs er ngs er		1	234 	3. 3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	78 00 00 00 00 00 00 00 00 00 00 00 00 00	}-		-(((1) (2)

3.4.3 Produktvorwahl im Ladeplan

- Für die Kalibrierung der einzelnen Tankkammern ist ausschließlich Wasser zu verwenden. Um dem Medium die richtige Schwimmereintauchtiefenkorrektur zuzuweisen, ist im Beladeplan bei MultiLevel stand alone sowie bei vorhanden sein von NoMix2000 das Produkt "Wasser" jeder Kammer zuzuweisen.
- 3.5 Setup der Kalibriereinheit, Menu <1. Parameter Liste>

3.5.1 Parameter Liste: <1. Knoten-Nr.>

- *G*→ Diese Daten sind nur zur Information!
- Gerändern nicht möglich!

Setup							
Knoten-Nr.							
Eigene Knoten-Nr. Name LGCS							
Knoten-Nr. 5							
Version 1.0							
F1 F2 F3							

ACHTUNG:

Andere Komponenten dürfen auf dem globalen CAN Bus nicht die Knotennummer 5 erhalten!

3.5.2 Parameter Liste: <2. K-Faktoren>

Die Standardeinstellungen dürfen nicht geändert werden.

- Die K-Faktoren ermöglichen die Anpassung des MID-Verhaltens an die Durchflussrate.
 Die Faktoren wurden bei FMC/Sening ermittelt.
- (Es ist möglich, die Kalibriereinheit neu zu justieren, indem ein Eichkolben mit den entsprechenden Durchflussraten gefüllt wird. Das ist nur erforderlich, wenn Abweichungen beim Eichen der Fahrzeuge auffallen.)

ACHTUNG:

Die Kalibriereinheit darf nur mit Wasser betrieben werden!

Set	up
K-Faktoren	
Pulse/Liter:	160
Liter/min	K-Werte
5 3	1.002213
105	1.001735
125	1.001208
155	1.000981
205	1.000933
235	1.001145
265	1.001206
300	1.000956
ZURÜCK VORHE	R NÄCHST
F1 F2	F3

Satin

3.5.1 Parameter Liste: <3. Durchflussraten>

Standardeinstellungen:

	-	Decup
Min Fluss:	50 ℓ/min Durchflussrate beim Bestim-	Durchflussraten
	men der Schlauch-, Rohrlei-	Min Fluss : 50 l/min
	tungsvolumen und Restmenge.	Max Fluss :350 l/min
Max Fluss:	350 ℓ/ min	
	Max. mögliche Durchflussrate	Min Höhe : 40 mm
Entlüftung:	350 <i>ℓ</i> /min Durchflussrate beim Entlüften	Flussregler:1
Min Höhe:	40 mm Übergang in die Restmengen- messung	ZURÜCK VORHER NÄCHST
Flussregler	1 (feste Einstellung verwen- den!)	F1 F2 F3

ACHTUNG:

Der Parameter "Min Höhe=40 mm" **muss** hier eingetragen werden, sonst Fehlfunktion bei der Ermittlung der Restmenge! Nur in Ausnahmefällen darf die "Min Höhe = 40 mm" in Absprache mit FMC Sening verändert werden.

3.5.2 Parameter Liste: <4. Flussraten Koffertank>

Bedeutung der Parameter:

- Die Füllhöhe beträgt von 0 mm des Peilstabs bis Schwimmer MAX-Wert 100%.
- Die Kalibriereinheit entleert die Tankkammer von Füllhöhe 100% bis 12% mit 260 *l*/min.
- Von Füllhöhe 12% bis 8% mit 150 ℓ/min.
- Von Füllhöhe 8% bis Schwimmer MIN (40 mm) mit 100 *ℓ*/min.
- Ab Schwimmer MIN (40 mm) geht die Kalibrierung in den Restablauf mit 50 *l*/min.
- Zur Vermeidung von Fehlmessungen durch schnelle Änderungen der Durchflussrate (z.B. beim Starten der Kalibrierung) oder durch Strudelbildung in der Tankkammer kann die Durchflussrate angepasst werden. Die nebenstehenden Daten haben sich bei Standard - Kammern bewährt. Die Durchflussrate sollte früher reduziert werden, wenn die Tankkammer im unteren Bereich zu Strudelbildung neigt. Der größte Teil der Kammer sollte mit 260 *ℓ*/min kalibriert werden, da die Kalibriereinheit hier besonders laufruhig und genau arbeitet.

S	Setu	p
Flussra	ten Ko	ffertank
8 %	100	l/min
12%	150	l/min
100%	260	l/min
0 %	0	l/min
ZURÜCK	VORHER	NÄCHST
F1	F 2	F3

ACHTUNG:

Der Parameter "Schwimmer MAX" wird aus dem MultiLevel übertragen und muss dort richtig eingetragen werden!

3.5.1 Parameter Liste: <5. Flussraten Zylindertank>

Eine zweite Tabelle für die Durchflussraten kann genutzt werden.

Es gilt das gleiche wie für den Koffertank.

	Setup	
Flussra	ten Zylta	n k
8 % 1 2 %	100 l/min 150 l/min	
100% 0%	260 l/min 0 l/min	
0	0 l/min 0 l/min	
0 % 0 %	0 l/min 0 l/min	
0 % 0 %	0 l/min 0 l/min	
ZURÜCK	VORHER NÄCH	SТ
F 1	F 2 F 3	3

3.5.2 Parameter Liste: <6. Ventilsteuerung>

ACHTUNG:

Bei Ventilsteuerung über NoMix2000 oder MultiLevel werden alle zugehörigen Ventile beim Kalibrieren automatisch geöffnet. Sind die Schläuche nicht richtig angeschlossen, kann das Kalibriermedium austreten!

3.5.3 Parameter Liste: <7. Abtropfzeiten>

 Die Abtropfzeiten legen die Wartezeiten fest, um die Restmengen der Rohrleitung bzw.
 Kammer sicher zu erfassen. Erst nach
 Leermeldung des Sensors im Schauglas und
 Abwarten der Abtropfzeit wird die Freigabe für den nächsten Kalibrierschritt erteilt!

Beispiel:

Beim Bestimmen des Schlauchvolumens zwischen Durchgangsventil und Kalibriereinheit muss die Leermeldung des Schauglassensors erfolgen und mind. 5 Sekunden gewartet werden, bis die nächste Funktion aufgerufen werden kann.

HINWEIS:

Diese Funktionalität ist vorgesehen für einen in Zukunft vorgesehenen automatischen Ablauf der Kalibrierung.

3.6 Setup der Kalibriereinheit, Menu <3. Tankwagendaten>:

MLCL							
Tankw	agendat	en					
1. Tan 2. Chi 3. Chi	kwagendat pCard les pCard sch	cen sen hreib.					
F1	F 2	F3					

3.6.1 Tankwagendaten: <1. Tankwagendaten>

@ Eingabe Tankkammerform:

- Koffer>: Durchflussraten Koffertank gültig
- <Zylinder>: Durchflussraten Zylindertank gültig

Eingabe Chassis Nr.:

Nur zur Information

					Ņ	1	Ι	ا	C]	L						
Таі	n I	k	W	a	g	Ē	91	n (d	a	t	. e) I	h			
T 	Т а –	a n -	n k C M	k f h u	k o - a - 1	ar-s-t	m m - s - i	m : _ _ L	e - s - e	r K - v	f - N - e	0 f r _ 1	r f -	m e -	r -	_	-
ΕΝΤ	E	R		Z	u F	m 3		B f	e ü	a r	r	b w	e e	i i	t t	e e	n r
z u r F	Ü 1	C	K				F	2	2		N	Ä	С	H E	S	т З	•

ACHTUNG:

Nach Ausschalten der Kalibriereinheit werden die Tankwagendaten auf die Voreinstellung zurückgesetzt. Damit werden auch die Durchflussraten der Voreinstellung "Koffertank" gewählt, obwohl vor dem Ausschalten die Werte vom Zylindertank gewählt wurden.

Das erneute Eintragen der <1. Tankwagendaten> ist nach dem Ausschalten erforderlich!.

3.6.2 Tankwagendaten: <2. ChipCard lesen>

Die Peiltabellen können nur eingelesen werden, sofern eine beschriebene Chipkarte mit Tabellen vorliegt. Auf jeder Chipkarte sind immer 24 Peiltabellen gespeichert (Kammer 1 ... 24). Alle 24 Tabellen werden in den Speicher der Kalibriereinheit eingelesen.

ACHTUNG:

Beim Ausschalten der Kalibriereinheit werden alle intern gespeicherten Tabellen gelöscht.

ACHTUNG:

Enthält die Chipkarte nur "Nullen", werden evtl. vorhandene Kalibrierungen in der Kalibriereinheit überschrieben!

3.6.3 Tankwagendaten: <3. ChipCard schreiben>

Das Speichern von Peiltabellen verläuft nach folgendem Muster:

- 1. Kalibriereinheit gerade eingeschaltet: Beim Speichern werden 24 Peiltabellen mit "Nullen" auf die Karte geschrieben.
- Die Kalibriereinheit enthält eine vollständig durchgeführte Kalibrierung von Kammer X: Die Chipkarte wird mit der Peiltabelle X beschrieben, alle anderen Kammern werden mit "Nullen" beschrieben.
- **3.** Es wurden zuerst Kammer X und anschließend ohne Abschalten der Kalibriereinheit Kammer Y kalibriert. Beide Kammern werden geschrieben, der Rest wird mit "Nullen" beschrieben.
- **4.** Kalibriereinheit eingeschaltet, Kammer X wurde von der Chipkarte eingelesen, anschließend wurde Kammer Y kalibriert. Kammer X und Y werden auf die Chipkarte geschrieben, die restlichen Kammern erhalten "Nullen".

ACHTUNG:

Beim Ausschalten der Kalibriereinheit werden alle intern gespeicherten Tabellen gelöscht. Anschließendes Speichern überschreibt alle Tabellen auf der Chipkarte mit "Nullen".

ACHTUNG:

Wird die Kalibriereinheit beim Beschreiben der Chipkarte ausgeschaltet, sind alle Daten sowohl in der Kalibriereinheit als auch auf der Chipkarte verloren. Siehe Empfehlungen auf der Folgeseite!

Empfehlungen:

Nach jeder Kalibrierung sollte die Peiltabelle auf eine eigene Chipkarte gespeichert und anschließend sofort in den MultiLevel übertragen werden.

Nach dem Ausschalten der Kalibriereinheit sind alle gespeicherten Werte in der Kalibriereinheit gelöscht. In dem Fall gibt es folgende Möglichkeiten:

- ٦
- 1. Einlesen der beschriebenen Chipkarte ==> Fortsetzen der Kalibrierung und anschließendes Speichern.
- **2.** Fortsetzen der Kalibrierung und anschließendes Speichern auf einer weiteren Chipkarte.

So wird sichergestellt, dass alle Kalibrierungen sowohl auf der Chipkarte als auch im MultiLevel abgelegt wurden

3.6.4 Einlesen der Peiltabellen von der Chipkarte in den MultiLevel

 Um eine neu erstellte Peiltabelle in den MultiLevel einzulesen, muss die "Chipkarten" Funktion im Menu <4> Service <5> aufgerufen werden. Die Peiltabellen werden mit der Funktion <3> eingelesen. (Menu 4.5.3)

	Chipkarte																			
A	u	S	W	a	h	1			:		4	5								
1 2 3 4		P P P P	a e e	r r i	a 1 1	m m t t	· a a	b b	1	e c s	s h l c	e r h	n s r	i e e	b n i	e b	n e	n		
Z	U	R	Ü 1	С	K				IF.	2	2					E		3		

Das Einlesen von Peiltabellen in den MultiLevel verläuft nach folgendem Muster:

- 1. Neue Peiltabellen werden von der Chipkarte in den MultiLevel übernommen.
- 2. Identische Peiltabellen (= identische Prüfsumme) werden nicht überschrieben.
- 3. Peiltabellen mit "Nullen" werden grundsätzlich nicht übernommen. Eine vorhandene Peiltabelle wird nicht mit "Nullen" überschrieben.

ACHTUNG:

Sollte versehentlich "Peiltab. schreiben" gewählt und das Schreiben bestätigt werden, wird die Chipkarte überschrieben. Damit werden die aktuellen Kalibrierungen von der Chipkarte gelöscht.

MultiLevel Kalibrierung **A** Vorbereitung der KalibrierungMN F18 005 GE || DOK-480 || Ausgabe/Rev. 2.00 (11/10)

4 Durchführung der Kalibrierung

Schritt 1:

Prüfen, ob alle Parameter richtig eingetragen wurden!

A.) Abschnitt 3.5 / Seite 16: Parameter Kalibriereinheit OK?

B.) Abschnitt 3.6 / Seite 21: Parameter Fahrzeug OK?

Schritt 2:

<2. Verbindung herstellen>

Die Verbindung muss vor jeder Kalibrierung hergestellt werden, da hier geprüft wird, ob die Verbindung zwischen den Komponenten korrekt aufgebaut wurde. Außerdem werden Daten der bevorstehenden Kalibrierung zwischen MultiLevel und der Kalibriereinheit ausgetauscht.

WICHTIG: Beim Herstellen der Verbindung wird der Parameter "Schwimmer Max" an die Kalibriereinheit übertragen. Damit begrenzt die Kalibriereinheit automatisch den Füllstand beim Befüllen der zu kalibrierenden Kammer beim Umpumpen.

Sobald die Verbindung hergestellt wurde und alle Daten übertragen wurden, erscheint über der **F2 - Taste** "CALIBR." als Freigabe des nächsten Schrittes.

Sening[®] ist ein eingetragenes Warenzeichen von FMC Technologies Inc.

Schritt 3:

<4. Kalibrierung>

Mit <4. Kalibrierung> wird der Kalibrierablauf gestartet!

Schritt 4:

Start des Kalibrierablaufs

- A.) Bestimmung der zu kalibrierenden Kammer
- B.) Festlegung, in welche Kammern wie viel Wasser gepumpt werden soll.

Nebenstehende Einstellung bedeutet:

- 1. Kammer 1 wird kalibriert
- Kammer 3 wird zuerst mit 10000 L über den Abgabestutzen 1 gefüllt.
- Kammer 2 wird anschließend mit 5000 L Wasser
 über den Abgabestutzen 2 gefüllt.

Achtung:

Die Summe beider Mengen muss größer als die Menge der zu kalibrierenden Tankammer sein. Die Kalibriereinheit stoppt hier nach 15000 L, auch wenn die zu kalibrierende Kammer noch nicht leer ist.

Kε	l I	n 1	n	e	r	а	ιυ	1 \$	5 1	Ŵ	a	h]						
	Z	u		k T	a a	l n	i k	b k	r a	i m	e m	r e	e r	n	d	е			
- 1	-		_	_	_	_	_	-	1 -	_	_	_	_	_	_	_	_	_	_
		Т	a	n	k	k	a	m	m	е	r		Ζ	u	m				
		_	_		3			Μ	а	Х			1	0	0	0	0		L
					2			Μ	а	Х				5	0	0	0		L
	-	7	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S	С	h	1	ä	u	С	h	е		а	n	S	С	h	1	•		
Dг	ü	С	k	е		F	2		f	ü	r		W	е	i	t	е	r	
ΖU	R	Ü	С	K		Ŵ	Б	Ι	т	Ð	R		N	Ä	С	Ħ	S	т	
	F	1						F	2	2					F	1 4	3		

Bedienungsanleitung Editor:

- Im Grundbildschirm ist kein Feld aktiviert. Aktivierte Felder werden durch <...> angezeigt.
- Mit F3 <NÄCHSTER> zum Feld springen, das geändert werden soll.
- **F2** springt auf <**Umschalten**>, in Eingabefeldern ist der Cursor aktiv.
- Mit F2 < Umschalten > bzw. dem Zahlenfeld können die Werte eingeben oder geändert werden.
- Bestätigung des Wertes mit < Enter>, das nächste Feld wird aktiviert.
- Ist kein Feld mehr mit <...> aktiviert, kann mit F2 <Weiter> der nächste Kalibrierschritt durchgeführt werden.

	K	ē	l II	Û I	n	e	r	а	ιι	1	5	Ŵ	a	h	_]	-					
			Z	u		k T	a a	l n	i k	b k <	r a 1	i m >	e m	r e	e r	n	d	e			
	-	-	-	– T	-	- n	- ৮	– ג	-	- m	- m	-	- r	-	- 7	-	- m	-	-	-	-
				1	a 7	11	3	Т	a	M	a	e x	T		1	0	0	0	0		L
_		_			*		2			М	a	Х				5	0	0	0		L
		/	S	С	h	1	ä	u	C	h	e		a	n	s	c	h	1			_
	D	r	ü	С	k	e		F	2		f	ü	r		W	e	i	t	e	r	
	Z	U	R	U	С	K	'n	W	ы	Ι	Т	E	R	-	Ν	A	С	H	S	Т	•
			5	1	,					F	2	2					E		3		

Schritt 5:

Öffnen der Ventile

- Gerror Das Öffnen der Ventile erfolgt automatisch, wenn die Ventilsteuerung über NoMix2000 oder MultiLevel erfolgt.
- Ger Wurde manuell gewählt, müssen an dieser Stelle die Ventile manuell geöffnet werden.
- In beiden Fällen erscheint der Bildschirm, um anzuzeigen, welche Ventile geöffnet werden müssen bzw. automatisch geöffnet wurden.

Βe	e t		ä	t	i	g	ſ			V	e	n	t		L	1	е	
	Ö	f	f	n	е		Т	a	n	k	v	е	n	t	i	l	е	
V V V V	e e e	n n n	ttt	i i i	1 1 1	:::::::::::::::::::::::::::::::::::::::	B D D D	V V V	_ / / /	1 A A A	P P P	I I I		1 3 2				
Z U	R	Ü 1	С	K		W	E	I	T	E	R				E		3	

Die Kalibriereinheit selbst öffnet die eigenen Ventile immer automatisch.

Bei automatischer Ventilsteuerung werden **ALLE** Ventile beider Kammern am TKW geöffnet, in die gepumpt werden soll. Die Mengenzuweisung erfolgt über die Kugelhähne der Kalibriereinheit.

Schritt 6:

Entlüften des Systems

Das komplette Rohrleitungssystem muss vor Beginn der Messungen entlüftet werden. Empfohlene Durchflussrate beim Entlüften: >260 ℓ/min

(Parameter dazu: Abschnitt 3.5.1, Seite 17)

ACHTUNG:

Wird mit weniger als **260** *l*/min entlüftet, ist nicht sichergestellt, dass alle Luftblasen aus der Rohrleitung mitgerissen werden!

Auch höher gelegene Rohrleitungsteile (z.B. API Kupplung) müssen entlüftet werden!

S	У	2	5	t	e	m	e	r	J 1	E.	1	ü	f	ť	: 1	1	ņ	g		
	Ρ	u	m	р	е	n		D	r	е	h	r	i	С	h	t	u	n	g	
	L	а	g	е	r	b	•		-	-	>		Κ	а	1	i	b	r	•	
—	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Α	k	t	u	е	1	1	е	r		D	u	r	С	h	F	1	u	S	s
									2	5	8		l	/	m	i	n			
	А	k	t	u	е	1	1	е	S		V	0	1	u	m	е	n			
							2	6	1	,	8		L	i	t	е	r			
								Η	ö	h	е	:								
							9	4	,	7	0		m	m						
—	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	F	ü	1	1	h	ö	h	е		Z	u		g	е	r	i	n	g		
							Ŵ	Ð	Ι	Т	Ð	R				S	т	0	Ρ	
			4	_					_	6	_		1	Г						
		2	1						F	2	2					Ľ		3		

- Die Kalibriereinheit stoppt automatisch, wenn der richtige Füllstand der zu kalibrierenden Kammer erreicht wird. Die dazugehörige Füllhöhe wird vom Fahrzeug an die Kalibriereinheit übertragen (Parameter Schwimmer MAX).
- Mit <F3> "STOP" wird die Pumpe ausgeschaltet. Anschließend kann mit <F2> "WEITER" der nächste Schritt angewählt oder mit <F3> "START" die Pumpe erneut gestartet werden.
- Gerr Drehrichtungsänderung der Pumpe ist nur möglich, wenn die Pumpe ausgeschaltet. Die Anzeige der Drehrichtung erfolgt in der 3. Zeile:

Mit : --> oder <--</p>

Empfehlung:

Nach dem Entlüften folgt immer ein Messvorgang. Dazu sollte der Impeller der Pumpe richtig ausgerichtet sein, um das Umschlagen der Lamellen bei Messbeginn zu vermeiden. Noch im Entlüftungsmodus sollte die Pumpe daher kurz in die richtige Richtung laufen.

Schritt 7:

Messung des Schlauchvolumens

S	C	e ł	1 .	1	a	u	C	: ł	ינ	V	0	1	u	n	1 6	91	n			
	S	С	h	1	i	е	ß	е		Т	a	n	k	v	е	n	t	i	1	е
		V V	e e	n n	t t	i i	1 1	:		D B	V V	/	A 1	Ρ	Ι	-	1			
-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			Ö	f	f	n	е		Т	a	n	k	v	е	n	t	i	1	е	
Z	U	R	Ü	С	K			W	Б	Ι	т	E	R							
		F	1	,					F	2	2					E		3		

- Nach dem Öffnen der Ventile muss mit <F2> "WEITER" der nächste Schritt angewählt werden.
- Anschließend wird mit <F3> "START" der Messvorgang zum Bestimmen des Schlauchvolumens gestartet.

S	C		h	1		a	u	С	: ł	1 1	V	0	1	u	n	n e	9.3	n						S	C	: ł
	L	а	ιġ	ſ∈	€	r	b	•		<	-	-		K	a	1	i	b	•						L	a
	A	k	t	ι.	1	e	1	1	e	r	5	– D 0	u	r 1	- C /	h m	F i	- 1 n	u	s	s				A	k
	S	С	: h	1]	L	a	u	С	h	v 3	0	1 3	u	m L	e i	n t	e	r							S	С
-	-	_			-	-	-	_	-	-	_	_	-	-	-	-	_	-	-	-	-			-	-	-
	D D	r r	t t	i c i c		k k	e e		F F	3 2		f f	ü ü	r r		S W	t e	a i	r t	t e	r				D D	r r
Z	U	R	ť	j (K			W	E	Ι	Т	Ð	R			S	Т	A	R	т			\mathbf{z}	U	R
	1	F	1	L						F	2	2					E		3						1	5

S	С	: ł	<u>ו</u> ב	1	a	u	С	: h	יו	7	0	1	u	n	l e		n				
	т	_	~	_		1-			/				τ2	_	٦		1-				
_	ц —	a _	g _	e -	<u>r</u>	a -	<u>.</u>	_	<_	_	_	_	к -	a _	⊥ _	_ _	a -	· _	_	_	
	A	k	t	u	е	1	1	е	r		D	u	r	С	h	F	1	u	S	S	
	~		,	-				,			0		1	/	m	i	n				
	S	С	n	T	a	u	С	n	v 6	0	⊥ 3	u	m L	e i	n t	е	r				
_	_	_	_	_	-	_	-	-	_	_	_	_	-	_	_	_	-	-	-	_	
	П	~		~	10	~		F	S		f		2		c	+	~	~	+		
	D	r r	u ü	c	к k	e e		г F	2		⊥ f	u ü	r r		S W	с е	a i	r t	с е	r	
Z	U	R	Ü	С	K			Ŵ	E	Ι	Т	E	R			S	Т	A	R	Τ	
	1	2	1						F	2	2					E		3			

Sobald der Flüssigkeitssensor im Schauglas abschaltet (gelbe LED erlischt), wird die Pumpe automatisch gestoppt.

 Fließt weiteres Medium nach, schaltet der Schauglassensor wieder auf gefüllt (gelbe LED leuchtet).

Mit <F3> "START" muss die Pumpe so oft gestartet werden, bis der Sensor nicht mehr freischaltet. (gelbe LED erloschen). Sobald der Sensor nicht mehr freischaltet und die dazugehörige Abtropfzeit verstrichen ist, kann mit <F2> "WEITER" der nächste Schritt im Kalibrierablauf angewählt werden.

ACHTUNG:

Die zu messende Menge sollte möglichst groß sein, um Messfehler durch häufiges kurzes Schalten der Pumpe zu vermeiden..

Schritt 8:

Messung des Rohrleitungsvolumens

- Nach dem Öffnen des Abgabeventils muss mit <F2> "WEITER" der nächste Schritt angewählt werden.
- Anschließend wird mit <F3> "START" der Messvorgang zum Bestimmen des Rohrleitungsvolumens gestartet. Es sollte so lange mit dem Starten der Messung gewartet werden, bis die Luft aus dem Anschlussschlauch in die Tankkammer entwichen ist.

R	0	h	r	1	. e	i	. t	: ι	11	n (g	S	v	0	1	u	m	e	n
S	С	h	1	i	е	ß	е		т	a	n	k	v	е	n	t	i	1	е
_	V -	e -	n -	t -	i _	1 -	: _	_	В -	V -	-	1	_	_	_	_	_	_	_
			Ö	f	f	n	е		Т	a	n	k	v	е	n	t	i	1	е
	V	е	n	t	i	1	:		D	V	/	A	Ρ	Ι	-	1			
Z	U	R	Ü	С	K		W	E	I	т	E	R			S	т	A	R	т
	1	5	1						F	2	2					F		3	

Ser Nach Öffnen des Durchgangsventils fließt das Wasser zur Kalibriereinheit. Anschließend kann die Füllmenge gemessen werden.

Schritt 9: Öffnen der Ventile

Erfolgt je nach Einstellung manuell oder automatisch, siehe Schritt 5 !

Bet	äti	ge	Ven	tile
Öf	fne	Tan	kven	tile
Ven Ven Ven Ven	til: til: til: til:	B V D V D V D V	- 1 / A P I / A P I / A P I	- 1 - 3 - 2
zurü F 1	C K	wei F2	TER	F3

Schritt 10:

Entlüften des Systems

- Siehe Schritt 6 !
- In diesem Schritt muss die Kammer auf jeden Fall bis zum maximalen Füllstand aufgefüllt werden. Der maximale Füllstand wird aus der MultiLevel Parameterliste übernommen.
- Mit <F2> "Weiter" wird der nächste Schritt im Kalibrierablauf angewählt.

	S	У	7 5	3	t	е	m	e	r	1	E	1	ü	f	ť	: 1	11	n	g	
	Ρ	u	m	р	е	n		D	r	е	h	r	i	С	h	t	u	n	g	
	L	a	g	е	r	b	•		-	-	>		K	а	1	i	b	r	•	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	А	k	t	u	е	1	1	е	r		D	u	r	С	h	F	1	u	S	S
									3	4	5		1	/	m	i	n			
	А	k	t	u	е	1	1	е	S		V	0	1	u	m	е	n			
							2	6	1	,	8		L	i	t	е	r			
								Η	ö	h	е	:								
							9	4	,	7	0		m	m						
-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-
	F	ü	1	1	h	ö	h	е		Z	u		g	е	r	i	n	g		
							Ŵ	Ð	Ι	Т	Е	R				S	Т	0	Ρ	
				_				_	_	6		_	1	Г	_	_	-			
		2	1						F	2	2					F		3		
							_													

ACHTUNG:

Es stehen 200 Messwerte verteilt auf die max. Füllhöhe (=Schwimmer MAX) zur Verfügung. Ein Überfüllen (manuell) über diesen Füllstand von mehr als 10mm ist nicht erlaubt, da sonst im unteren Bereich die letzten Füllstands-Messwerte bei der Kalibrierung nicht gespeichert werden können !

Schritt 11:

Kalibrieren des Tankkammer

- Mit <F3> "START" wird die eigentliche Kalibrierung der Kammer begonnen. Es ist darauf zu achten, dass die "~" der zu kalibrierenden Tankkammer im Multilevel Display verschwunden sind. (Schwimmer hat sich beruhigt)
- Die Kalibrierung läuft automatisch ab. Die Dauer hängt von der Größe der Kammer ab.
- ∠J Zum Beispiel:
 10000 Liter ==> 260 ℓ/min ==> theo. 38 Min.
- Praktisch ca. 45 Min. aufgrund der Durchflussreduzierung zum Ende der Messung.

Ca	librieı	rung
01:	Z 1 3	0 m m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
02:	213	5 m m
03:	32.	7 m m
04:	32.	3 m m
Quern Längs	eigung: neigung Mohr	+0,82° -0,33°
F1	F 2	F 3

Beschreibung der Anzeige:	Calib. Compartment
Schwimmer MAX (aus Parameter MultiLevel)	Composition to 1
Aktueller Füllstand	Height: 1300.00 mm
Volumen, das seit der letzten Messwertspeicherung gemessen wurde.	Level: 257,43 mm Step vol: 9,47 l
Aktuelle Durchflussrate	
Aktuell gemessenes Gesamtvolumen	Flowrate: 262 l/min Volume: 1051.21 l
Solldurchflussrate (Siehe Parameter 4 oder 5 "Flussraten")	FlowSet: 260 l/min
	STOP
	F1 F2 F3

ACHTUNG:

Es sollte auf jeden Fall vermieden werden, die Kalibrierung zu unterbrechen, um Messfehler zu vermeiden!

Schritt 12:

Bestimmung der Restmenge

- Der Übergang in die Restmengenmessung erfolgt automatisch. Die Pumpe stoppt, sobald der Schauglassensor trocken fällt (gelbe LED erlischt).
- Anschließend kann sie mit <F3> "Start" jederzeit angeschaltet werden, um zusammengelaufenes Restmedium zu messen.
- Erst wenn der Schauglassensor dauerhaft trocken anzeigt (gelbe LED erloschen), ist die Messung abgeschlossen.

Falsch: Hier wird die gesamte Menge und nicht nur die Restmenge angezeigt!!

Re	9 8	5	t	v	0	1	. τ	1 I	n	e	n								
Γ)r	ü	С	k	е		F	3		f	ü	r		S	t	a	r	t	
– – 7	k	t	u	e	1	1	e	r	-	– D 4	– u	- r 1	- c /	– h m	– F i	- 1 n	u	S	ß
F	Кe	S	t	v	0	1	u 8	m 1	e 7	n	0	7	,	L	i	t	e	r	
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I I)r)r	ü ü	C Ø	k k	e e		F F	3 2		f f	ü ü	r r		S W	t e	a i	r t	t e	r
						W	E	Ι	Т	E	R			S	Т	A	R	т	
	F	1	,					F	2	2					E		3		

Schritt 13:

Schließen der Ventile

Erfolgt je nach Einstellung manuell oder automatisch, siehe Schritt 5 !

	E	e	e t		i '	t	i	g	e			V	e	n	t	i		1	e	
S	С	: h	. 1	i	е	ß	е		Т	a	n	k	v	е	n	t	i	. 1	e	
	V V V	'e 'e 'e	n n n	t t t	i i i	1 1 1	•••••••••••••••••••••••••••••••••••••••		B D D	V V V	-////	1 A A	P P P	I I I		1 3 2				
							Ŵ	E	Ι	т	Ю	R								
		F	1						F	2	2					E]	3		

Schritt 14:

Speichern der Werte auf die Chipkarte

- Service Nachdem die Kalibrierung durchgeführt wurden, müssen die Daten anschließend auf die Chipkarte geschrieben werden.
- Gerry Detaillierte Anleitung: Siehe 3.6.3 / Seite 23

Dringende Empfehlung:

Nach jeder Kalibrierung sollte die Peiltabelle auf einer separaten Chipkarte gespeichert und anschließend gleich in den MultiLevel übertragen werden. Nur so ist sichergestellt, dass z.B. bei Stromausfall nicht alle Kalibrierdaten durch Löschen aus der Kalibriereinheit verloren sind!

Schritt 15:

Lesen der Werte von Chipkarte in den MultiLevel

- Um eine neu erstellte Peiltabelle in den MultiLevel einzulesen, muss die "Chipkarten"
 Funktion im Menu <4> Service <5> aufgerufen werden.
- Die Peiltabellen werden mit der Funktion <3> eingelesen.
- Ger Detaillierte Anleitung: Siehe Abschnitt 3.6.2 / Seite 22.

ACHTUNG:

Sollte versehentlich "Peiltab. schreiben" gewählt und das Schreiben bestätigt werden, wird die Chipkarte überschrieben und die aktuelle Kalibrierung von der Chipkarte gelöscht.

Schritt 16:

Kopieren und Abspeichern aller Kalibrierdaten auf den PC

Daten, die sich auf der Multimediakarte befinden, müssen auf jeden Fall am Ende der Fahrzeugkalibrierung auf einen gesicherten Speicher kopiert werden.

Zur Speicherung der Daten auf einem PC muss die Multimediakarte ausgebaut werden und in einem Kartenleser ausgelesen werden. Auf der Multimediakarte sind alle Peiltabellen als .LGT – Dateien, alle Neigungstabellen als .ICT – Dateien und alle Logbücher als .LOG - Dateien abgespeichert.

Zum Beispiel:

Neigungstabelle Kammer	1: COMP01.ict
Peiltabelle Kammer 1:	COMP01.lgt
Parameterliste:	PARAMS.log

Dringende Empfehlung:

Jede Multimediakarte sollte kopiert und fahrzeugspezifisch auf einem sicheren Firmenverzeichnis abgespeichert werden.

Damit ist sichergestellt, dass alle spezifischen Tankwagendaten immer wieder im Multilevel eingespielt werden können.

MultiLevel Kalibrierung **A** Durchführung der KalibrierungMN F18 005 GE || DOK-480 || Ausgabe/Rev. 2.00 (11/10)

5 Auswertung der Kalibrierung

5.1 Allgemeines

- Die Zulassung des MultiLevel schreibt vor, dass für jede Kalibrierung die so genannte "Ableitung" berechnet werden muss. Damit wird überprüft, ob die Kalibrierung richtig durchgeführt wurde und keine Unregelmäßigkeiten aufgetreten sind. Die Peiltabellen aller Kammern sind auszuwerten.
- Die Peiltabelle besteht aus Wertepaaren von Füllhöhe und Füllvolumen. Aus diesen Wertepaaren wird die Ableitung berechnet, indem die Volumenteilschritte der Tabelle durch die dazugehörigen Höhenschritte dividiert werden. Das Ergebnis gibt die Steigung der Einzelwerte aus der Peiltabelle an. Diese Steigung spiegelt gleichzeitig auch die geometrische Form der Kammer wieder.

Höhe	Volumen	Ableitung Steigung = $\frac{\Delta V}{\Delta H} = \frac{Volumendifferenz}{H\"öhendifferenz}$						
39,5 mm	0,0 Liter	-						
46,1 mm	14,0 Liter	2,1 Liter/mm						
57,6 mm	39,4 Liter	2,2 Liter/mm						
68,8 mm	65,6 Liter	2,3 Liter/mm						
80,1 mm	94,5 Liter	2,5 Liter/mm						

5.2 Erstellen der Ableitungen aus den Peiltabellen

Eine Sening Peiltabelle (hier COMP01.LGT) sieht folgendermaßen aus:

ACHTUNG:

Die Werte in der Peiltabelle sind über eine Prüfsumme geschützt und dürfen nicht verändert werden. Bei einer fehlerhaften Prüfsumme wird die Peiltabelle ungültig.

Gerror Diese *.LGT Tabellen lassen sich leicht in Excel einlesen, um die Ableitungen zu berechnen und diese grafisch darzustellen.

Abbildung 8: Erzeugung einer Ableitungsgrafik

5.3 Kriterium für die Güte der Kalibrierung (Anforderung an die Ableitung)

- Fahrzeuge, die mit einem Füllstandsmesssystem ausgestattet sind, benötigen in Deutschland eine Zulassung. Die Anforderungen an ein solches Fahrzeug sind u.a. in dieser Zulassung dargestellt.
- Die Messkammern und die Einbaulage der Peilstäbe müssen so ausgelegt sein, dass das Gesamtsystem die Genauigkeitsanforderungen der Zulassung erfüllt. Insbesondere durch die Neigungskorrektur ergeben sich bestimmte Geometrieanforderungen, die eingehalten werden müssen.
- Die Genauigkeitsanforderung beim Einbau der Peilstäbe ist unbedingt einzuhalten. Die Peilstäbe müssen genau nach Zeichnung ausgerichtet werden. Abweichungen können zu Ungenauigkeiten bei der Neigungskorrektur führen.
- Installation so, dass messtechnische Manipulationen nicht möglich sind. Plombenstellen sind in der Zulassung und im Messanlagenbrief darzustellen.

Abbildung 10: Ableitung einer schlechten Ausliterungskurve

Die o.g. Abweichungen verglichen mit der gedachten Ideallinie dürfen abhängig von der Kammergröße die Werte aus der Zulassung nicht überschreiten.

6 Checkliste Fahrzeug

- Sind alle Ventile, Kupplungen, Sensoren, Elektronikkomponenten, usw. richtig montiert, dicht und funktionsfähig?
- Strom- und Luftversorgung Fahrzeug vorhanden?
- Sind sowohl NoMix2000 als auch MultiLevel richtig in Betrieb genommen?

Laufen beide Systeme einwandfrei hoch?

Es müssen alle Komponenten des internen und externen CAN - Busses erkannt werden. Fehlermeldungen, wie z.B. *Prüfsummenfehler Peiltabelle*, *Neigungstabelle*, ... sind OK und müssen nach der Eingabe der Parameter verschwinden, siehe unten!

EMIS muss während der Kalibrierung ausgeschaltet werden!!

NoMix2000 auf CAN - Bus Knoten 10 gesetzt?

Parameter MultiLevel sowie NoMix2000 (Nur erforderlich für Kalibriereinheit - Software 1.0 v. März 2006)

Ist das Fahrzeug sicher aufgebockt und auf 0° ausgerichtet?

Hat die Schlauchleitung zur Kalibriereinheit genug Gefälle?

ACHTUNG:

Das Fahrzeug muss so hoch aufgebockt werden, dass der Schlauch zwischen Fahrzeug und Kalibriereinheit mit Gefälle verläuft!!

Der Schlauch ohne Gefälle kann schlecht leer gepumpt werden, da die Entlüftung nicht optimal funktioniert.

Ist die richtige Kammerzahl eingegeben?

Wurden die Winkelkorrekturen eingegeben und das Fahrzeug "genullt"?

+	31545	Sens.	Offset	Lāngs
+	31546	Sens.	Offset	Quer
+	31547	Inst.	Offset	Länss
+	31548	Inst.	Offset	Quer

Müssen noch in "Sens. Korrektur" umbenannt werden! Wie im MultiLevel !

ACHTUNG: Nur Beispielwerte!!

Sind alle relevanten Höhenparameter richtig eingegeben und die Höhe "genullt"?

Befüllung der Kammern mit Wasser:

In welcher Reihenfolge sollen die Kammern kalibriert werden? Steht genügend Wasser für die Kalibrierung zur Verfügung? Sind die richtigen Kammern gefüllt worden?

ACHTUNG:

Es stehen nur 200 Messwerte verteilt auf die max. Füllhöhe (=Schwimmer MAX) zur Verfügung. Ein Überfüllen (manuell) über diesen Füllstand von mehr als 10mm ist nicht erlaubt, da sonst im unteren Bereich die letzten Füllstands-Messwerte bei der Kalibrierung nicht gespeichert werden können!

- Sind die gewählten Lagerkammern groß genug, um das Wasser aus der zu kalibrierenden Kammer aufzunehmen?
- Ist die Gewichtsverteilung so, dass vor und auch nach der Kalibrierung ein sicherer Stand des Fahrzeuges gewährleistet ist?
- Sind die Schrankklappen bzw. die Pneumatikschalter so arretiert, dass kein Boden- bzw. Durchgangsventil blockiert wird?

Ist der K-Block gezogen?

Wird der Druckluftschalter – falls vorhanden – von NoMix200 mit Luft beaufschlagt? Wenn die Ventile manuell bedient werden sollen, muss der Druckluftschalter trotzdem mit Luft versorgt werden, da NoMix2000 sonst eine Fehlermeldung generiert. MultiLevel Kalibrierung <>

 $\mathbf{Sening}^{\texttt{®}}$ ist ein eingetragenes Warenzeichen von FMC Technologies Inc.

7 Checkliste Kalibriereinheit

- Ist die Kalibriereinheit über den CAN Bus an das Fahrzeug angeschlossen?
- Sind Strom- und Luftversorgung f
 ür die Kalibriereinheit vorhanden?

Erforderlich: 400V incl. Nullleiter, mind. 6 bar

- Sind die Schlauchleitungen richtig angeschlossen und alle Verbindungen dicht?
- Ist die Kalibriereinheit an die Kammer angeschlossen, die auch kalibriert wird?

Der Schlauch muss mit Gefälle an die zu kalibrierende Kammer angeschlossen werden. Wenn möglich, sollte ein klarer Schlauch verwendet werden.

Wohin soll das Wasser gepumpt werden?

Sind die dazugehörigen Schläuche der Kalibriereinheit richtig angeschlossen?

- Sind alle Kalibrierparameter richtig eingegeben?
- Ist die Verbindung zwischen MultiLevel und Kalibriereinheit hergestellt worden?
- Sollten alle Punkte OK sein, kann mit der Kalibrierung begonnen werden.

MultiLevel Kalibrierung **A** Checkliste KalibriereinheitMN F18 005 GE || DOK-480 || Ausgabe/Rev. 2.00 (11/10)

8 Anschrift und Kontakt

Wichtiger Hinweis

Alle Erläuterungen und technische Angaben in dieser Dokumentation wurden vom Autor mit größter Sorgfalt erarbeitet und zusammengestellt. Trotzdem sind Fehler nicht ganz auszuschließen. Für die Mitteilung eventueller Fehler sind wir jederzeit dankbar.

Unsere Serviceabteilung unterstützt Sie gerne und ist zu erreichen unter:

Measurement Solutions

F. A. Sening GmbH

Regentstrasse 1 D-25474 Ellerbek

Tel.:	+49 (0) 4101 304 - 0	(Zentrale)
Fax:	+49 (0) 4101 304 - 152	(Service)
Fax:	+49 (0) 4101 304 - 133	(Verkauf)
Fax:	+49 (0) 4101 304 - 255	(Auftragsbearbeitung)
E-Mail:	info.ellerbek@fmcti.com	
Web:	www.fmctechnologies.com	n/seningttp

Sening[®] ist ein eingetragenes Warenzeichen von FMC Technologies Inc.

MultiLevel Kalibrierung <>

Anhang A. Zertifikate und Zeichnungen

Zertifikate und Zulassungen	No.	Page
Messanlagenbrief		54
Funktionsschema (Beispiel)		55
Rohrleitungsschema (Beispiel) / Stempelplan		56
-Beiblatt-		57
Stempelplan / 1		58
Stempelplan / 2		59
Elektronisches Eichsiegel	DOK-482	60
Zeichnungen	No.	Page
Sensor NS-2E komplett	51.351307	61
Restmengen Sensoreinstellung hinter dem NS-2E / NS-2A	51.350839	62
Neigungssensor	51.351979	63
Anschlussplan Peilstab-Interface MLIF	61.351918	64

Zertifikate

Messanlagenbrief

MESSANLAGENBRIEF		(A)	Füllstandsmessgerät					
Für ein Füllstandsmessgerät mit Schwimmer als Volumenmesssystem mit elektronischer Peilvorrichtung mit Messbehälter			 Zulassung: Peilstabinterface - Nr.: Controller - Nr.: Neigungssensor - Nr.: 					
Motorwagen Anhänger								
Sattelanhänger			Kammer	Peilstab Nr.	Schwimmer Nr.	Temperatur- fühler Nr.		
			1					
Messanlagenhersteller:			2					
			3					
			4					
Messbehälter Nr.:			6					
Zulassung:				I				
Produktabteile: Inhalt der Kammern (max.):		(B) <u>Pumpe</u> Type: Q _{max} (<i>l</i> /min) P _{max}						
Betreiber:		(C)	Leerschlauch - Anzahl: Nennweite DN (mm):					
·····		(D)	Usennweite	─ <u>Vollschlauch</u> - Anzahl: Nennweite DN (mm):				
Messanlagenbrief Nr.:Ausgestellt am:		(E)	Druckv Drucker Se	verk eriennr.:				
		(F)	Sonstig	ge wichtige Einb	auten			
(Stempel der Eichbehörde) (Unterschrift)	·	Messan	lagenbrief N	r.:	Seit	e 1 von 3		

Sofern amtliche Stempel unverletzt und keine Veränderungen an dem Messbehälter vorgenommen werden, ist der Messbehälter geeicht bis:

Jahr	Eichamt / Prüfer	Jahr	Eichamt / Prüfer		

Beachtung!

Der Messanlagenbrief, sowie der Parameterausdruck sind Bestandteil der Messanlage. Diese sind im Fahrzeug mitzuführen. Unautorisierte Siegelverletzungen und unzulässige Veränderungen sind verboten und werden vom Gesetzgeber verfolgt. Instandsetzungsberichte sind bis zur amtlichen Bestätigung dem Messanlagenbrief beizugeben.

Funktionsschema (Beispiel) der messtechnisch bedeutsamen Steuerleitungen

Messanlagenbrief Nr.:

Von der Eichbehörde bestätigte Änderungen sowie Ersatz verletzter Sicherungsplomben gemäß Instandsetzungsbericht - Beiblatt -									
Änderung (Ä) bzw. Plomben- verletzung (P)	Index (A-F)	Elektronische Siegelzahl	Software- CRC	Eichparameter- CRC	Datum / Prüfer	Instandsetzer	Eichamt Ordnungsz.		
Messanlagenbrief Nr.: Beiblatt Nr. 1									

	<u>Stempelplan</u>			
2 (1) MLIS	Legende			
	Тур	Teilenummer	Bezeichnung	
	1 oder altern. Typ 2	MLMAINDISP	Plombe als Schraubensiche	erung
	1 oder altern. Typ 2	MLIF	Plombe als Schraubensiche	erung
	1 oder altern. Typ 2	NM2WET	Plombe als Schraubensiche	erung
	2 oder altern. Typ 1	MLIS	Plombe mit Plombendraht	
MLDTS-2 NS-2F	2	MLDTS-2	Plombe mit Plombendraht	
	2	NS-2E	Plombe mit Plombendraht	
	2	MLDSBO-xxxx	Plombe mit Plombendraht	
		xxxx =	Peilstablänge in mm	
	3	DOK-482	Siegeldokument	
		(1)		
	Messanlagenbrief Nr.:			Be

Beiblatt Nr. 3

FMC Technologies

Elektronisches Peilstabsystem MultiLevel Siegel-Beleg

Rev. 1.00 JP / Datum: 01.08.2006 / MN F18 007 GE / DOK-482

Elektronisches Eichsiegel

als Anlage zum Meßanlagenbrief

Innerstaatliche Bauartzulassung

Das Siegel wurde erstellt durch:

Unterschrift und Zeichen des Bearbeiters:

Zur Kontrolle des Siegelzustandes unbedingt folgende Anweisungen beachten:

- Das Siegel wird durch die Prüfung nicht verletzt.
- Der nebenstehende Siegelabdruck des Multiflow kann mit folgender Tastenkombination wiederholt werden:

Einschalten, Hauptbildschirm

- <Menu>
- <4>, (Service)
- <1>, (Siegel)
- <1>, (Siegel anzeigen)

<Print>

- Die Siegelzahl auf der Kopie sowie auf dem Original muß übereinstimmen
- Der Text unter der Siegelzahl muß lauten: *Siegel OK*
- Wenn die Angaben nicht übereinstimmen, ist das Siegel gebrochen worden. Entsprechende Maßnahmen müssen eingeleitet werden.

ACHTUNG:

Unrechtmäßige Veränderungen der eichpflichtigen Daten oder des **Eich-Siegels sind strafbar!**

Sening[®] Innovative Tank Truck Systems

Zeichnungen

51.351307 - Sensor NS-2E komplett

DOK-377; DOK-454; DOK-416 "Schutzvermerk nach DIN 34 beachten"

${f Sening}^{{f \$}}$ ist ein eingetragenes Warenzeichen von FMC Technologies Inc.

Technische Änderungen vorbehalten.

Sening[®] ist ein eingetragenes Warenzeichen der FMC Technologies Inc.

Die aktuellen Kontaktinformationen erhalten Sie auf unserer Webseite: www.fmctechnologies.com/measurementsolutions unter "Contact Us" in der linken Navigationsspalte.

Headquarters:

500 North Sam Houston Parkway West, Suite 100 Houston, TX 77067 USA, Phone: +1 (281) 260 2190, Fax: +1 (281) 260 2191

Measurement Products and Equipment: Eri, PA USA +1 (814) 898 5000 Ellerbek, Germany +49 (4101) 3040 Barcelona, Spain +34 (93) 201 0989 Beijing, China +86 (10) 6500 2251 Buenos Aires, Argentina +54 (11) 4312 4736 Burnham, England +44 (1628) 603205

Dubai, United Arab Emirates +971 (4) 883 0303 Los Angeles, CA USA +1 (310) 328 1236 Melbourne, Australia +61 (3) 9807 2818 Moscow, Russia +7 (495) 5648705 Singapore +65 6861 3011 Integrated Measurement Systems: Corpus Christi, TX USA +1 (361) 289 3400 Kongsberg, Norway +47 (32) 28 67 00 San Juan, Puerto Rico +1 (787) 772 8100 Dubai, United Arab Emirates +971 (4) 883 0303

Weitere Informationen über Sening[®] Produkte: www.fmctechnologies.com/seningttp

Gedruckt in Deutschland © April 2010 F. A. Sening GmbH. Alle Rechte vorbehalten. MNF18005EGE / DOK-480 Ausgabe/Rev. 2.00 (November 2010)